

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Quantitative Determination of Reactive Species in Alkali Halide Disks

Don G. Lambert^a; Howard S. Kimmel^a

^a Department of Chemical Engineering and Chemistry, Newark College of Engineering, Newark, New Jersey

To cite this Article Lambert, Don G. and Kimmel, Howard S.(1972) 'Quantitative Determination of Reactive Species in Alkali Halide Disks', *Spectroscopy Letters*, 5: 11, 415 — 419

To link to this Article: DOI: 10.1080/00387017208065410

URL: <http://dx.doi.org/10.1080/00387017208065410>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

QUANTITATIVE DETERMINATION OF REACTIVE SPECIES IN ALKALI HALIDE DISKS

KEY WORDS: Infrared spectroscopy, alkali halide disks, quantitative analysis

Don G. Lambert and Howard S. Kimmel
Department of Chemical Engineering and Chemistry
Newark College of Engineering
Newark, New Jersey 07102

As part of an infrared investigation of the kinetics of the reactions of KMnO_4 in a KI disk and of KIO_4 in a KI disk, the stoichiometry of the two reactions was needed. A previous study¹ has shown that MnO_4^- reacts in a KI matrix to produce IO_4^- (which then reacts further to form IO_3^-) and MnO_2 . Iodate ion is the only observable product in the reaction of IO_4^- in a KI matrix¹. The infrared absorption at 740cm^{-1} , which is due to the presence of IO_3^- , was found to obey the Beer-Lambert Law. However, calibration curves for KMnO_4 in KI and for KIO_4 in KI could not be obtained because both species reacted with the dispersing medium during the preparation of the disk¹. It was also observed that no immediate reaction occurred when KBr or KCl disks containing KMnO_4 , or KIO_4 were prepared. Thus, an extrapolation method was sought which would permit the estimation of calibration curves for the reactive species.

EXPERIMENTAL

All the chemicals used in this study except KBr were obtained from Fisher Chemical Co. and were reagent grade. Potassium bromide, spectro-grade, was obtained from Matheson, Coleman and Bell. The grinding and mixing of all samples were done with mortar and pestle. Pressed pellets from these samples were prepared using standard methods.

All spectra were recorded on a Perkin-Elmer 457 Infrared Spectrophotometer. The base-lime method was used to determine the initial and final percent transmittance of the peaks of interest and both were corrected for weight variations in the disk².

RESULTS

Calibration curves for KIO_3 in KCl , KBr , and KI are shown in Figure 1. Since these plots obey the Beer-Lambert Law, the slopes of the lines yield the extinction coefficients. It is seen that the extinction coefficients decrease going from the KI matrix to the KCl matrix. Calibration curves for $KMnO_4$ in KCl and KBr (Absorption band at 900cm^{-1} was used.) and for KIO_4 in KCl and KBr (Absorption band at 847cm^{-1} was used.) also obeyed the Beer-Lambert Law. The extinction coefficients obtained from calibration curves thus far discussed are shown in Table 1.

Hester and Krishnan³ have reported that the vibrational frequencies for metal nitrates are linearly related to the ionic potential (z/r) of the metal ion. The linear relationship between the integrated absorption coefficient and the vibrational frequency⁴ suggests that a similar relation may exist between the extinction coefficient of an infrared band and the

TABLE 1

Extinction Coefficient (cm^{-1}) of $KMnO_4$,
 KIO_4 , and KIO_3 in Alkali Halide Disks

Alkali Halide substance	KI	KBr	KCl
KIO_3	7.34	5.25	2.92
KIO_4	7.95*	5.25	3.13
$KMnO_4$	1.24*	3.41	9.40

* Extrapolated value.

DETERMINATION OF REACTIVE SPECIES

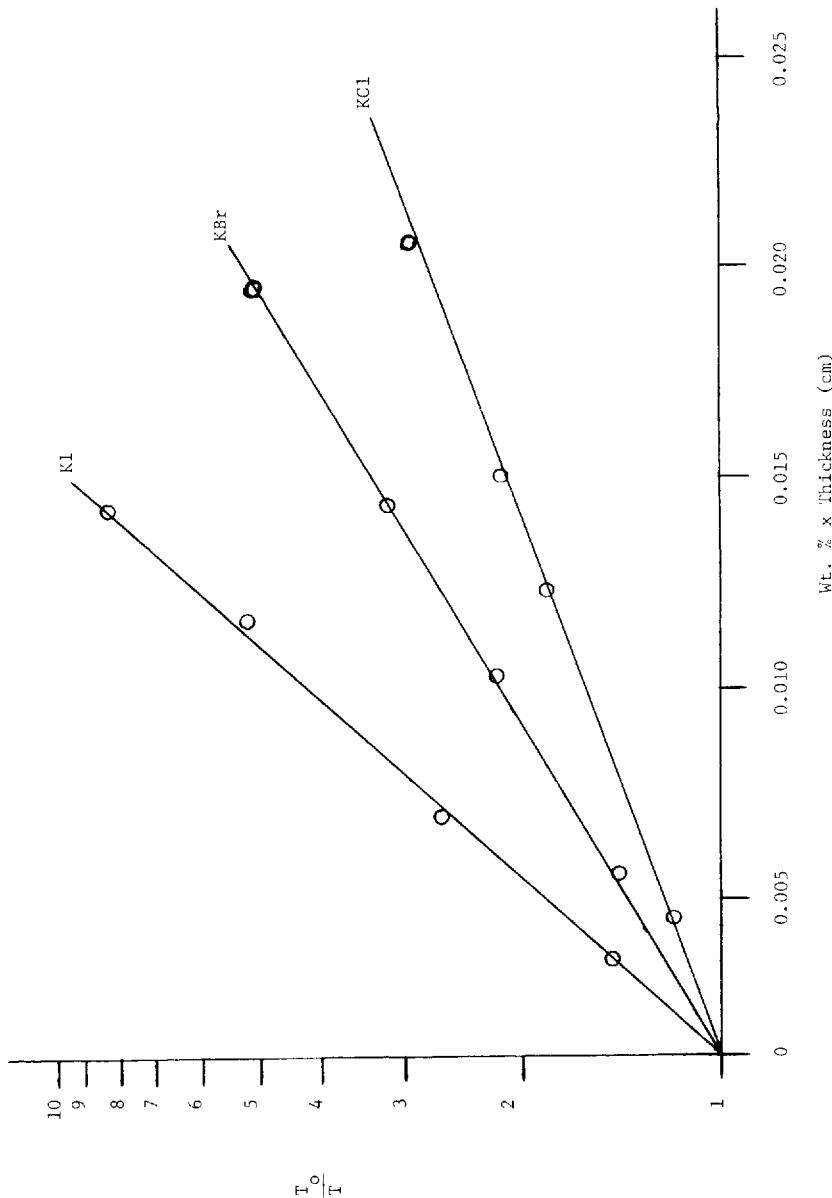


FIG. 1
Calibration Curves of KIO_3 in KCl , KBr , and KI .

reciprocal of the ionic radius; i.e., $1/r$, of the negative ion making up the matrix, e.g., Cl^- , Br^- , and I^- .

A plot of the extinction coefficients of KIO_3 in KCl , KBr , and KI versus the reciprocals of the ionic radii of the respective negative ions was linear, as shown in Figure 2. If it is assumed that such plots for KMnO_4 in KCl and KBr and for KIO_4 in KCl and KBr are linear, then the extinction coefficients for KMnO_4 in KI and KIO_4 in KI can be estimated and calibration curves for these systems can be constructed. These estimated extinction coefficients are shown in Table 1.

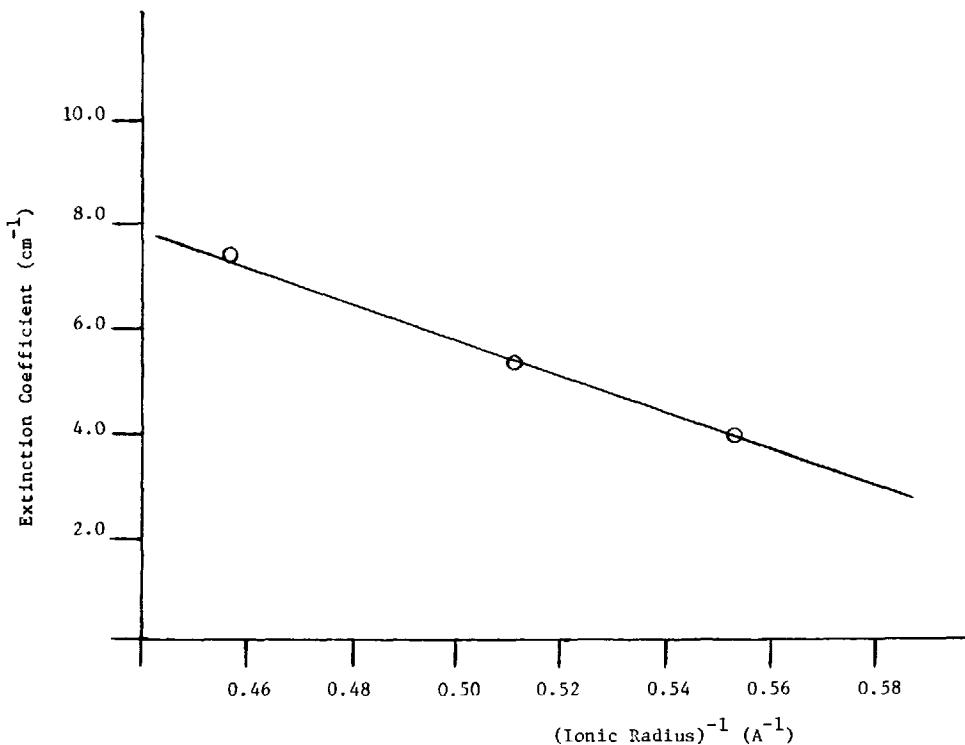


FIG. 2

Extinction Coefficients Vs. $(\text{Atomic Radius})^{-1}$ of Negative Ion
For KIO_3 in KCl , KBr , and KI .

DETERMINATION OF REACTIVE SPECIES

The calibration curves obtained in this study for KMnO_4 in KI, KIO_4 in KI, and KIO_3 in KI were used to determine the concentrations of these species at various times during the course of the reaction. The consistency of the results obtained in the study of the stoichiometry of the reactions of interest and the work of Hester and Krishnan² suggests that the extrapolation method discussed in this communication should yield reliable extinction coefficients when the substance to be studied is not stable in an alkali halide matrix and calibration curves can not be obtained in the conventional manner.

REFERENCES

1. T. Gymkowski, D. G. Lambert and H. S. Kimmel, *J. Inorg. Nucl. Chem.*, 34, 1841 (1972).
2. L. A. Cosby, "Vibrational Assignments for Solid Malonic Acid", Ph.D. Dissertation, West Virginia University, Morgantown, W. Va., 1970.
3. R. E. Hester and K. Krishnan, *J. Chem. Phys.*, 47, 1747 (1967).
4. G. M. Barrow, "Introduction to Molecular Spectroscopy", McGraw-Hill Book Company, Inc., New York, 1962, p. 77.

Received September 28, 1972

Accepted October 16, 1972